
Speech To Text Activated Typewriter
Michael Xiao

Cornell University
Ithaca, NY

mfx2@cornell.edu

Yanir Nulman
Cornell University

Ithaca, NY
ywn2@cornell.edu

INTRODUCTION
The history of mechanical key-pressed input systems to
compose lingual messages stems back centuries, with early
innovations beginning in the 16th century and accelerating
during the 19th century. It wasn’t until the 1870s that the
keyboards we know and love today grew popular, which
was due, in part, to the advent and introduction of the
typewriter [6]. For decades, the standard QWERTY
keyboard, introduced by Christopher Latham Sholes,
became the world standard due to its lower statistical
probability of causing typewriters’ arms to jam. The
QWERTY layout became so commonplace that it remained
the standard for the computer keyboard during the rise of
the digital age.

Fortunately, computers no longer have mechanical arms
that can get stuck as typewriters did. Therefore the
QWERTY layout is no longer a useful structure, especially
in an era that values efficient work speed. To address this
baggage, researchers and companies such as Google and
Microsoft have introduced Speech to Text (STT)
technologies that monumentally increase the speed of
language input on digital devices due to the fluidity and
low-effort of speech.

Currently, STT is most often implemented without driving
any mechanical movements or traditional computer
keyboard inputs. A user simply speaks and the text appears
on a display or is repeated to them via a voice assistant.
The joy of hearing and seeing typing is becoming sparse in
the age of “hands free” computing.

To address this epidemic, we are looking to introduce a
solenoid driven, mechatronic typewriter which uses
hands-free voice dictation and a cloud based STT
technology as the input. Beyond serving as a novel
integration of new and old technologies, the piece serves as
an artistic statement of technology’s past, present, and
future.

RELATED WORK

Speech To Text (STT)
STT is widely accessible for both local and cloud-based
processing. The technology has been in development since
the 1970s but has rapidly improved in speed and accuracy
in the past decade. Specifically companies such as
Microsoft, Google, IBM, and Amazon, have achieved an
accuracy as high as 97%. The technology has become
adopted en masse through applications such as voice
powered assistants, hands free texting in vehicles, and even
reached areas such as military applications and accessibility
use cases.

Keyboard Typer
Much of the related work in mechanical keyboard typers
has been done by hobbyists and implemented in various
forms. Travis Scholl on youtube published a video of a
“Keyboard Robot” he built with a lego robotics kit[1]. The
design includes a two axis system that moves to the location
of the desired key to press and uses a gear system to punch
into the key.

TY The Typing Robot is composed of an arm that uses a
camera and light computer vision to obtain a relative
position of the arm as it moves around the keyboard[2]. The
computer vision approach allows for a dynamic swapping
of different keyboards.

Callie A. of The Dalton School built a typing system similar
to TY The Typing Robot in that it uses an arm to move
around the keyboard’s space, but does not use computer
vision as a guide. Callie does, however, use Google’s
Speech To Text services to dictate to the system what to
type[3].

ROBOETRY II is a two arm keyboard typing robot-poet
system which selects words from a dictionary to write a
poem and then recite the poem[4].

Autonomous Typewriters
Hobbyists have also worked on automatic typewriters,
which require a bit more complexity because of their
multi-level keypad system.

Brian Benchoff uses an array of arms on servos to press into
the typewriter and another arm that is fixed to a sliding rail
to slide the page back into starting position. The system is
controlled by voice dictation on an arduino
microcontroller[5].

Mike Szczys built a system that uses a string system
underneath the typewriter to pull down the keys to press.
Because the actuation system is underneath the typewriter,
the typewriter appears to be typing on its own. The system
was designed to be an art installation[6]. While this design
was not compact, it became a point of inspiration for our
work.

DESIGN GOALS
As mentioned above, the main goal of the system aims to
fuse an “ancient” typewriter with modern STT technology.
Beyond executing this bare minimum, we also hope that
this integration is seamless, almost as if it were invisible.
Hiding the mechatronic actuation of the keys underneath or
behind the typewriter is a major design goal as it not only
preserves the ability to manually type on the typewriter, but
it contributes greatly to the overall “magic” of the
self-typing typewriter. The hidden implementation is meant
to mirror the “ghost piano” that has caught the public’s
attention from years before and presents it in a new and
interesting medium.

Overall, such a system uses the simplicity and ease of use
of voice as the input, yet preserves the joy of mechanical
typing. Moreover, as mentioned before, we’re looking at the
project as an artistic take on how we are witnessing, in real
time, the antiquation of the mechanical keyboard as an
input. Smartphones are being driven by voice, swipe to type
keyboards, and other input explorations. Smart TVs reject
physical keyboards entirely and move away from the
QWERTY standard. This project is the intersection of
where digital input is going and where it used to be.

HIGH LEVEL DESIGN

To actually execute upon the rather broad goals set out in
the design goals section, it was important that the project
was split up into individual electromechanical segments for
individual exploration and eventual reintegration. This
technique helps us diverge and assess the options to best
execute very specific motions and also allows for much
easier division of labor.

As a general overview, the typewriter sits upon a small
pedestal (~4 inches tall) in which the mechanisms of the
self-typing system are housed. This is a “black box” effect
in which the true mechanisms are hidden from the vision of

the user/observer. Within this box are 28 different tendons
that are attached to the arms of the keys we plan to use (26
letters, period, space bar). Each of these tendons act as
pulleys that are routed through a bar that redirects the
tendons parallel to the plane of ground and backwards away
from the keys. Our original design intended to connect the
tendons to a row of spring-tensioned pistons which, when
pulled by an actuator, will pull the tendon to strike a key.
Though this worked, it was very slow as the stepper motor
would have to move a large distance, often using several
rotations, in order to reach from one key location to the
other. Furthermore, if we wanted to speed this up, we
would need to use several actuators that would continue to
increase the complexity and form factor of the piece.

Unfortunately, initial prototypes of this system proved to be
too slow for the intended “magic” of the art, and we
changed to a design in which a solenoid sat on a servo
which pivots to the right lever on an arch that corresponds
to a key press. This arch has arms that have tendons
connected to it. The solenoid then punches the lever arm
which in turn yanks on the tendon to pull the key arm down
over a fulcrum and strike a key.

In addition to figuring out the key presses, we also aimed to
automated the carriage return after the typewriter reaches
the end of a line. This involves both sensing when this
needs to be done and actually pulling the carriage over in a
sleek and hidden way.

While we were building the final integrated system, we
learned that the paper roller knob on the left side is threaded
and unscrews itself when the paper is rolled due to typing
progression. After the first unscrew, it rendered the reset
lever useless, and we had to resort to manually resetting the
carriage return by hand. The software design counts how
many characters are typed and stops when at the end of a
line and waits for the manual reset to the beginning of a
new line to resume typing. Because of the poor
construction of the typewriter, we decided to forego the
automation of this piece to prevent the self deconstruction
of the device and to maintain the sleek aesthetic of the
current model.

The last piece of architecture exploration that needs to be
completed is the crucial speech-to-text component of the
project. We began the project by exploring using Google
Cloud services to compute speech recognition online. This
would be done directly on the ESP32 connected to WiFi/
However, during the budgeting of our project, we decided
to not spend money on Google services and decided to use
Apple’s free services on the iPhone and communicate with
the ESP32 via bluetooth. This also eliminated the need for a
microphone, which would have needed tuning as well.

Figure 1 shows a cardboard prototype showing the tendon
architecture and visualizing the footprint of the device.

What operation would look like can be seen in video 1. As
seen, the mechanism sits below the typewriter such that the
keys can still be used manually.

Figure 1: Typewriter on cardboard prototype

DESIGN AND CONSTRUCTION

In this section, we describe our experiences and findings
from the first prototype of the device along with how we
addressed these issues in our final model. In this initial
prototype, we aimed to construct a linear multiplexing
system using a belt to pull a solenoid lever arm to hit the
tendon arms. Below, we describe the key functional units
from our construction.

Key Actuation
Pressing the keys of the typewriter is probably the most
important functionality that the rest of the system relies
upon for successful operation. This proved to be a very
interesting problem to solve as the constraints required
balancing several parameters. First, the actuation had to be
fast enough to produce the required impulse to actually
strike the letter upon the tape. However, making an
actuator too fast sacrificed power needed to actually push
against the spring resistance of the key. Furthermore,
consistency is also very important to this particular
functional unit because it will be constantly actuating
throughout the use of the device. Lastly, frequency was
also a very important consideration. This differs from
speed in that it represents the “reload time” between each
keystroke. Having a high typing frequency can allow the
device to better follow up with what has been said in the
STT microphone.

With these initial design parameters, we brainstormed
solutions and found that a solenoid with a lever arm would
provide an effective means to accomplish our goals. Our
resulting 3D printed mechanism is shown below in figure 2
and is demoed in video 1 in the folder below. The design
consists of 3 3D printed pieces: 2 that screw into the
solenoid and a lever arm attached to the solenoid shaft. The
longer end across from the fulcrum gives more reach to the
system and allows for even faster strokes. This system was
very promising so we planned ahead and added holes such
that the 8mm rod bearings could be secured as well.

Figure 2: Solenoid with lever arm

As we moved on to testing with the actual typewriter, we
soon found that though this solenoid was powerful, it still
was not able to generate the necessary impulse for fully
striking a key to produce a visible letter. This led us to
change hardware to a larger solenoid, operating at 6A and
12V. This solenoid is shown below in figure 3 and was
much bigger than our previous design as seen in scale with
Michael’s hand. This new hardware was more powerful but
increased the form factor of our linear rail system greatly,
pushing us further from the implementation.

Figure 3: New 72 W solenoid

Multiplexing the Actuator
The main goal of multiplexing the actuator was simply
moving the actuator horizontally across a single axis.
Drawing inspiration from other plotting devices, we
initially decided on using a belt driven system relying on a
set of 8mm guide rails to limit motion to just one axes.
Luckily, we were able to find some in the parts left over

from last year to test with and bought the belt and pulley
pieces.

As our parts came in, we began to design our system
consisting of two side plates supporting the three linear rails
to house the solenoid movement and the swing arm pistons
that connect directly to the cables. One side plate contains
mounting brackets for both the stepper motor and the limit
switch. The stepper motor drives the system via a pulley
attachment. The limit switch is a fancy button that is used
to calibrate the system, serving as a zero point when the
carriage activates the switch. The other side plate contains
a notch for latching in another pulley to tension the belt
upon. Between these two plates are three different rods.
the arms are separated by small bearings. Figure 3 shows a
CAD model of the side plate. Figure 4 shows the
assembled unit. Figure 5 shows a more closeup view of the
carriage and limit switch. Video 2 shown in the video
folder below highlights the system moving and calibrating
via the limit switch.

Figure 4: CAD models of side panels

Figure 5: Belt Linear Actuator

Figure 6: Closeup on limit switch and components

The main shortcoming with this initial system is that it is a
little slow, and one of our design goals was to ensure that
the typewriter felt magical. This is something that could
only be achieved with a faster typing speed than what we
could not each with the current system. Therefore, we
switched to a radial design which uses a solenoid on a servo
and punches levers on an arch. Rather than moving a large
distance linearly across the rail, we can simply twist about a
single axis to access our 28 tendons. The main drawback of
this approach is the complexity of tendon routing and more
precise multiplexing necessary to distinguish between
individual letters. This addressed several of our issues
including substantially faster typing and minimizing the
footprint of the mechanism.

As an overview, we used a 3D printed arched arm holder.
This model is shown below in figure 7. As seen, there are
28 slots for arms to fit inside. Our first challenge was
finding something that could hold all the arms together in a
rounded path. We overcame this by creatively utilizing a
0.25 OD flexible tubing segment to route through the holes,
creating a rounded axis of rotation for the arms to sit in.

Figure 7: arched arm holder

While routing our tendons, we also found it was very
difficult to correctly tension our strings such that they were
taught enough to achieve the required distance of movement
while being loose enough to allow the solenoid to pick up
some momentum before the strike. Furthermore, the close
quarters of all the arms made it very difficult to tie the
strings. This led us to create a tendon arm that looks like
figure 8 shown below. We used a laser cutter to cut this
piece so that it was fast and easy to create 28 copies of. The
hole allows the string to be routed through the arm and the
two notches around the sides allow us to wrap the string
around the sides to tension the tendon rather than tying a
really tight knot. We found that after 3 wraps and a small
piece of tape, the friction was secure enough to hold the
string to the arm even with the solenoid actuating.

Figure 8: tendon arm

Lastly, in this functional unit, we had to configure the
solenoid with the servo so that the servo could rotate the
solenoid module. To do this, we first laser cut a circular
guide that houses the solenoid that constricts its motion to
twisting about one axis. This is shown in figure 9 below
with just one arm in the arm holder. As seen, the solenoid
sits between two round plates. These plates are constricted
by rings on the bottom. The servo mounts to the top of this
structure via an attachment point and a set of screws. The
servo sits in a attachment piece that allows it to be secured
statically to the top surface of the casing. This was a very
tricky piece to design as it required a lot of tolerancing and
exact measurements within the z axis.

Figure 9: Servo multiplexing system

As we moved forward with this design, we also had to
begin to consider the framework of the device and how
components would fit together. We had to keep in mind
how to structure our pieces in order to make wires
accessible and the different layers on the internal part of the
device. This will be further discussed in the integration
section. Video 3 in the video folder shows some early
testing with this setup.

Carriage Return
Returning the carriage is another very important part of the
system as it is responsible for resetting a new line to be
typed on. We originally had planned to use a belt system as
indicated above to achieve this long linear motion, but as
mentioned earlier, the platen knob (paper rolling knob)
which is attached to the carriage return lever broke during
integration and testing and removed the capability to
automatically return the carriage. This made automating this
with actuators a rather difficult task at the end.

Because of this, we instead resorted to pausing the typing
and waiting for a manual return of the carriage and paper
scrolling. In terms of sensing when the carriage should
return, we have a simple counter variable implemented that
counts the number of keys that have been pressed since the
last return. This works because each press on the typewriter
is equally spaced, meaning regardless of what letter is
pressed, the horizontal spacing will always be the same.
Each time the actuator is used (letter, space bar, or period),
we can simply increment the variable and compare it to a
limit to sense when the carriage return needs to happen. In
our testing with 8.5” width paper, we found this limit to be
70 characters. This pause in typing was implemented on the
software side of the ESP32 microcontroller we used for the
system. In the future, we could also add a microphone to
sense the bell of the typewriter such that it is adaptable to
any width of paper. We would have to be careful to reject
noise into the microphone however.

Speech to Text and iOS App
We decided to take advantage of the ESP32’s bluetooth
capabilities and built an iOS application that connects to
and communicates with the device. Building an iOS app
was also advantageous because we could use Apple’s
built-in Speech to Text services for free[7].

In order to enable speech to text services from Apple,
permission to use the microphone and speech recognition
by the device owner is necessary. Once granted, the
microphone stream is sent on a separate thread to a speech
recognition request which returns and updates the
interpreted speech as a string with other metadata encoded
such as confidence level and timestamps. Originally, we
had planned to use the timestamps to be able to manage
keyboard editing, but decided to disable speech recognition
when the user would use the keyboard as an input.

The app is comprised of two way bluetooth serial
communication which was adapted from Arduino’s
bluetooth libraries for the ESP32 side and helper files
adapted from Jindřich Doležy’s github repository[8]. The
app sends character bytes to the device and the device sends
a progress integer back to the app.

Additionally, the app displays the connectivity with the
ESP32 via two modes: dark and light. Dark mode (gray text
on a black background) is indicative of no connection to the
device, and light mode (black text on a white background)
is indicative of a connection.

The app and device follow a communication protocol in
which the app sends one character from the current spoken
(or typed) message and the device will return how many
characters have been typed by the automatic typewriter
system. Once the iOS app has received the progress made
by the typewriter, it will send another character if possible.
Only characters which are able to be typed out by the
typewriter are sent. Therefore all characters are lowercase
and the only punctuation sent is periods (question marks
and exclamation points are converted to periods).

The iOS app displays the progress made by the typewriter
by using two colors for the text. Characters that have yet to
be typed are light gray and those that have already been
typed are black. A custom UITextView component was
made to dynamically manage the view heuristics based on
the progress of what was typed. This was done in order to
abstract out the text management from the main view
controller and into the UI component itself. The visuals of
this feature and other heuristics are highlighted in Figure
10.

It was of great importance that the app contain little to no
functionality other than to control the typewriter. We
wanted the interaction to feel as though it was with the
typewriter, rather than with the phone. Therefore, there are
no buttons or additional functionality other than the text and
speech input. The simple black and white UI and Courier
New font work to enhance the effect of feeling like the
users are interacting with the typewriter.

The app also has a shake to reset function in which the text
clears, the speech to text resets, and the app sends a reset
key to the device to restart the ESP32 all upon shaking of
the iPhone.

Figure 10: App Screenshot

Integration
After getting all these functional units working, we started
integration. The integration consisted of two main portions:
hardware and electrical system.

Hardware integration revolved around the design of our
frame. The internal skeleton of the frame can be seen in
figure 11. The frame consists of 4 separate compartments.
The compartment in the front (pictured top right of picture)
allows strings coming down from the keys to be routed.
The middle compartment houses the servo and solenoid
setup described in the multiplexing section of the report.
This compartment has two layers. The bottom layer has a
constricting base that allows the solenoid to spin on one
axis. The top layer puts the arm holded arch at the right
height such that the tip of the arms are just a few
millimeters above the ground. The left and right
compartments in the back are for storage of electronics and
can be accessed through laser cut windows that allows wire
to reach all parts of the device.

Figure 11: Typewriter skeleton

Figure 12 shows how tendons are routed. Coming from the
top, the tendons wrap around a rod suspended in the frame
that twists the vertical tendons into horizontal motion.
These tendons are routed through the grill, which keeps the
strings orthogonal to their original motion downwards from

the individual key that each tendon is attached to. Lastly,
the tendons are routed to respective arms. The routing from
the bottom of the device can be seen in figure 13. This
routing took a substantial amount of time as we had to
properly tension and attach 28 different strands. This
marked the hardest part of our project - making a solution
that worked for 3 units work for 28 units. Everything had
to be done 28 times making the project repetitive and
monotonous. This made it especially important to spend
time contemplating the most efficient and effective solution
before executing it.

Figure 12: Front view of support rod and grill

Figure 13: Tendon routing from below the device

This configuration of laser cut walls also made our system
very modular. We connected all pieces using T-slots and
M3 hardware such that it is easy to remove the outer casing
for fine tuning. Furthermore, the orthogonal bracing made
the frame very sturdy, crucial for supporting the heavy
weight of the typewriter without buckling.

Lastly, to add one last piece of functionality to our device,
we implemented a set of manual controls. This was done
by adding a toggle switch that would switch the mode of
the device. In STT mode, the typewriter would function as
designed, allowing the user to speak to the phone app to
control its typing. If the switch is pressed, the device can
be toggled into semi-manual mode, allowing the user to use
the potentiometer and the button on the front of the device
to control the angle of the servo and the actuation of the
solenoid, allowing the user to try to hit keys on their own.
This added one more layer of intractability in our system.
To interface this with the frame, we used a drill press to
drill mounting holes in the front of the device. The results
are seen in figure 14.

Figure 14: button controls at the front of the device

After the frame and casing was manufactured, it was time to
fine tune all the electrical systems to operate together. The
electronics include a 12V power supply mounted to a power
switch for safety. We also had to integrate the high power
solenoid, a strong non-continuous servo, a switch, a button,
and a potentiometer. As mentioned, above, we utilized the
Feather ESP32 microcontroller due to its internal bluetooth
and very fast clock speed. However, this choice of
microcontroller gave rise to several issues. First, the relay
we had to actuate the solenoid ran on 5V so the logic on the
controller would not actuate the hardware. Secondly, the
servo we had also runs on 5V. To solve these problems, we
proposed three separate solutions. We could have an
intermediate Arduino Uno microcontroller to process
commands from the ESP32 to actuate these devices, we
could use a level shifter, or we could use the UA7805 to
step down the 12V down to 5V for use. We ended up
choosing the third solution due to our familiarity with the
approach and bought a new 3.3V logic relay for the
solenoid. This resulting circuit can be seen below in figure
15.

Figure 15: Electrical Schematic

Finally, after seeing that our circuit worked on a
breadboard, we wanted to make our electrical system more
robust. To do this, we moved the entire circuit onto a
solderboard so that we do not have to deal with wires
coming loose or shorting across different terminals. This
was time consuming but paid off as our electronics are
sleek, safe, and reliable. Finally, we used wood screws to
mount all of our electronics to a base plate that the frame
was also mounted to. This view of the electronics can be
seen below in figure 16.

Figure 16: Electrical setup

Figure 17: Completed STT Typewriter

FUTURE WORK
Through our prototyping and final integration we learned of
many opportunities to improve the project. First, to improve
the typing speed even further, we could include a second
servo-solenoid unit to actuate the pulleys. With the addition
of such a modification, it would also be useful to reroute
some of the pulleys in a manner that groups commonly hit
characters together so that the servo would need to rotate
less to hit characters that are statistically likely to follow
one another.

Another important addition to the system would be a
working carriage return that does not require human
intervention. A belt and rail system would be one method of
implementing the carriage return, but would also require a
pulley system to activate the carriage return lever. This
addition would add to the “magic” that we intended to
create with this project.

It would also be helpful to brainstorm a more efficient way
to tension and tie our tendons to the arms. The status quo
requires us to set the device across two tables and work
from beneath it much like how an auto shop works on cars.
This is extremely tiring and significantly slowed our
progress as we had to spend so much time wiring the
tendons. Figure 18 shows Yanir hard at work performing
this task.

Figure 18: Yanir wiring tendons

To ensure project feasibility within the scope of this class,
we narrowed the range of “hittable” characters to lowercase
letters and the period punctuation mark. Subsequent work
on the project should include expanding this set of
characters to all possible characters supported by the
typewriter.

Enabling automation of the shift functionality of the
typewriter further expands the set of characters that could

be typed, but poses a challenge because it requires more
force to actuate than any of the other characters.

Lastly, we are not fully satisfied with the reliability of the
solenoid hits on the arms. Often times, when we try to hit a
letter, it will also hit a neighboring letter, failing to actuate
the actual key strike. This solution has several solutions.
We could find a more precise servo motor; the current one
often will go to slightly different positions even with the
same code with the tight granularity in the project. Another
solution that would help with this is adding an attachment
to the tip of the solenoid edge that allows the tip to catch
just one arm while pushing the adjacent ones aside. We
could also integrate a bottom layer of arm holders such that
the spacing between arms is more consistent as there is
some horizontal wiggle room that makes some spacing
tighter than others.

Though we were pretty impressed and happy with our
results in this project, there are many steps for further
improvement and we hope to put more effort into the
project next semester as we find more time to work.

PARTS LIST
A detailed parts list for the project can be found here:

https://docs.google.com/spreadsheets/d/1bISCvK-7QLbU-
KKgEN4fP5oyISpZfHnrEcDQbU2vrPQ/edit?usp=sharing

VIDEOS AND DOCUMENTATION
Videos referenced in the text, additional videos highlighting
the mechanism, code, and other files referenced throughout
the text can be found in a Google Drive folder here:

https://drive.google.com/drive/folders/10brgs3JIbIE2VTG_
ixcaPvk0HnG9hVxx?usp=sharing

REFERENCES
1. Travis Scholl. 2010. Keyboard Video. Video.

(2010). Retrieved September 22, 2019 from
https://www.youtube.com/watch?v=qExIeZtt8KA

2. Elecia White. 2018. Ty the Typing Robot. Web. (4
May 2018). Retrieved September 22, 2019 from
https://hackaday.io/project/157946-ty-the-typing-r
obot

3. Callie A. 2016. Typing Robot. Web. (29 July
2016). Retrieved September 22, 2019 from
https://bluestampengineering.com/student-projects/
typing-robot/

4. Steph Horak. 2013. Roboetry II: A typing robot
poet. Video. (31 January 2013). Retrieved 22
September 2019 from
https://www.youtube.com/watch?v=u3gQnFP8o1g

5. Mike Szczys. 2013. Automating a Mechanical
Typewriter. Web (11 April 2013). Retrieved 22
September 2019 from
https://hackaday.com/2013/04/11/automating-a-me
chanical-typewriter/

6. Brian Benchoff. 2017. The Voice Recognition
Typewriter. Web. (17 February 2017). Retrieved
22 September 2019 from
https://hackaday.com/2016/02/17/the-voice-recogn
ition-typewriter/

7. Apple Speech Framework , 2019. Web. Retrieved
9 October 2019 from
https://developer.apple.com/documentation/speech

8. dzindra. 2018. BLE-iOS-demo. 2018. Web (28
November 2018). Retrieved 20 October 2019 from
https://github.com/dzindra/BLE-iOS-demo

https://docs.google.com/spreadsheets/d/1bISCvK-7QLbU-KKgEN4fP5oyISpZfHnrEcDQbU2vrPQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1bISCvK-7QLbU-KKgEN4fP5oyISpZfHnrEcDQbU2vrPQ/edit?usp=sharing
https://drive.google.com/drive/folders/10brgs3JIbIE2VTG_ixcaPvk0HnG9hVxx?usp=sharing
https://drive.google.com/drive/folders/10brgs3JIbIE2VTG_ixcaPvk0HnG9hVxx?usp=sharing
https://www.youtube.com/watch?v=9bZkp7q19f0
https://www.youtube.com/watch?v=qExIeZtt8KA
https://hackaday.io/project/157946-ty-the-typing-robot
https://hackaday.io/project/157946-ty-the-typing-robot
https://bluestampengineering.com/student-projects/typing-robot/
https://bluestampengineering.com/student-projects/typing-robot/
https://www.youtube.com/watch?v=u3gQnFP8o1g
https://hackaday.com/2013/04/11/automating-a-mechanical-typewriter/
https://hackaday.com/2013/04/11/automating-a-mechanical-typewriter/
https://hackaday.com/2016/02/17/the-voice-recognition-typewriter/
https://hackaday.com/2016/02/17/the-voice-recognition-typewriter/
https://developer.apple.com/documentation/speech
https://github.com/dzindra/BLE-iOS-demo

