
Continu-wall: A creative surface to connect children.
Michael Xiao

Cornell University
Ithaca, NY

mfx2@cornell.edu

Matthew Daniel
Cornell University

Ithaca, NY
mrd89@cornell.edu

ABSTRACT
The Continu-wall is an in-home product designed
for children that has two main objectives:

1. To enable creativity through a large
continuous physical canvas and

2. To connect people across different
cultures and large distances

The device contains a continuously scrolling
wallpaper that allows the canvas to be moved into
and out of each side of the wall. This allows
children to physically save, reset, and revisit
drawings while providing a large, expansive
canvas that allows them to spatially experience
their art - a critical concept for their creativity,
especially at such a young age.

Additionally, Continu-wall houses a camera,
touch screen GUI, and plotting system. These
additional features allow the user to save their
own drawings and send them over Wifi to those
around the globe. The plotting mechanism can be
used to recreate friends’ or strangers’ drawings
from pictures sent to the device. This digital
communication allows children from different
locations to connect through the universal
language of art and collaborate and share their

drawings. Figure 1 shows the front view of
Continu-wall.

Figure 1: Continu-wall

SCENARIO
Samuel and Lizzie are two six year olds living in
the suburbs of New Jersey that love to draw. On
weekends, they would often have play dates in
which they worked together on the same canvas
to learn and draw together, building a bond as
well. Unfortunately, Lizzie recently moved across
the country to California and since, Samuel has
become a bit antsy without an art partner. While
home alone on the weekends, Samuel has started
drawing on the walls of his house as well leading
to frustration from his parents.

Recognizing Samuel’s passion and talent with
drawing, his parents decide to install the
Continu-wall in the house, encouraging him to
draw on it. With the device, Samuel comes home

every day to draw new things on large surface
and he loves to compare his drawings to his past
work saved on the wall’s scroll. Furthermore,
Samuel has been to stay in touch with Lizzie by
sending his drawings to her through the
Continu-wall. On Monday Samuel draws a
square and sends it to Lizzie. Lizzie receives the
drawing and sends back a house that was drawn
from the square. Samuel proceeds to finish the
drawing by adding trees, people, and some
windows to the house.

In addition to staying in touch with Lizzie,
Samuel sends his art to his pen pal in France who
loves to draw. Even though there is a language
barrier, the two are able to fully appreciate the
universal language of art through a collaborative
work. Through this experience, Samuel is able to
appreciate other cultures and get in touch with
those outside his immediate bubble.

OPERATION
In its current state, the prototype of Continu-wall
is driven by 3 different stepper motors; two that
control the scrolling and one for controlling the
vertical plotting motion. One small servo is also
used to actuate the pen. These actuators are
controlled by a Raspberry Pi 3. The Raspberry Pi
is also outfitted with a camera that sits on the top
of the frame and a touch screen display with four
physical buttons as well. Due to our limited time
frame, we chose to forego the touch screen
capability to focus on other aspects of our
projects as the display proved to be rather
challenging to set up. As such, the four buttons
serve as the user input. Within the touch screen,
we utilized the PyGame library to create a GUI
and different menu levels. In its initialization
state, the display shows the logo, the current
menu level, and the operation of the four buttons
on the side. This is shown in figure 2.

Figure 2: Initial screen

As seen the buttons allow the user to navigate to
other menu levels. The quit button exits the
program for use with other programs (or in our
case to reprogram the script). The scroll button
brings the user to the scrolling menu that allows
the user to move the screen back and forth. The
picture button actuates the camera and snaps a
picture of the screen. The user is shown a
preview of this capture before getting options to
either save it on the device locally, send it via
email, share the picture with another
Continu-wall device, or retake the picture. The
email functionality can be seen in figure 3 below.

Figure 3: Sample email from Continu-wall

Finally, there is the draw button which brings the
user to the drawing menu. In this menu, the user
can tell the plotting system to draw primitive
shapes to start some artwork off of or download
an image from another user. The image can then
be processed by noise filtering, thresholding,
Sobel’s edge detection, and vectorization to
generate GCODE to tell the plotting steppers and
pen servo how to respond in order to draw the

desired picture. All menus have a back button
that brings the user back to the main menu.

LIST OF COMPONENTS
Electrical Components

● Raspberry Pi 3 x1
● Touchscreen TFT display x1
● Raspberry Pi Breakout board x1
● Nema 17 stepper motor x3
● non-continuous micro servo x1
● PiCamera module x1
● DRV8825 Pololu stepper motor driver x2
● 12V 3A power supply x1
● UA7805 5V voltage step down x1

Hardware Components

● Assorted M3 hardware
● M3 heat inserts
● 8mm wooden dowels
● Timing pulleys x2
● Timing belt
● 6” paper roll

PROCESS OF CONSTRUCTION
This project began by deciding the scale at which
we wanted to build the prototype. Since the full
scale will be 3 feet and around 6 feet long, it is
not feasible for us to make a prototype at that
scale. Rather, we aimed for a ⅙ scale model. As a
result, our prototype measures about 8” tall, 3”
deep, and 22” long. This model is small enough
to be feasible to build but large enough to convey
the intent of the model.

After deciding the scale, we started designing a
laser cut frame of that size that serves as both the
backboard for the paper but also the general
structure of the project. The frame consists of ⅛”
plywood joined together with M3 hardware
through the use of laser cut T-slots. The initial
rendering of this frame is shown in figure 4. As
seen, there are different attachment points for the
three stepper motors, a window for the
touchscreen display, two vertical slots for the
paper scroll to move through. The figure also
shows the various 3D printed pieces which will
be discussed further in the paper.

Figure 4: Rendering of frame, 3D printed
pieces highlighted in colors

With the frame complete, we designed a 3D
printed bracket for each stepper motor which
connects directly to the frame. These brackets
make use of heat inserts to hold everything
steadily. To the rightmost stepper, we designed
and printed a roll to attach the paper to in order to
keep tension in the paper when moving back and
forth. To the leftmost stepper we designed an
attachment to snugly hold the roll from both
sides. Each of these motors are controlled by the
Raspberry PI with stepper motor drivers to
control them. The two bottom stepper motors are
routed to the same motor driver such that they
will always stay synced from a hardware
perspective. Additionally, we utilize an external
12V power supply to power each motor controller
due to the high current draw from the stepper
motors. With all motors incorporated, we were
able to move the paper back and forth with ease.
Figure 5 shows these stepper holders.

Figure 5: Stepper holder

With the scrolling mechanism complete, we put
our attention to the drawing mechanism which
houses a pen or marker and can move vertically
and lift the pen off the paper. The pen holder uses
a simple servo motor and rubber band to control
if the pen is up against the paper writing or pulled
away. When the servo motor is twisted, the arm
will push the pen away from the wall. When the
arm is down, the rubber band holds the pen
snuggly to the paper. The pen holder is attached
to two wooden linear rails to keep things aligned
and a belt drive which is powered by another
Nema 17 stepper motor routed through a second
motor driver. These two rails are held in place by
two 3D printed mounts which attach directly to
the top and bottom of the Continu-wall’s frame.
Figure 6 shows the pen holder and carriage parts.

Figure 6: Pen holder and vertical carriage

Lastly, we mounted the touch screen, Pi, and
camera to the frame. The touch screen fits over
the GPIO pins on the Pi and includes a breakout
cable to retain access to other pins. The Pi and
screen is held in place by a small bracket that
screws into the front face. The camera sits on a
thin laser cut arm that juts out from the main
frame. A 3D printed mount holds it at an angle
downwards such that it is capturing the main
portion of the wall.

Finally, we wired up each of the hardware
components onto a breadboard which fits nicely
in the back of the device and placed the back
cover on to improve the overall look of the
product. The overall mounting and fit of the
project can be seen in figure 7. As seen, there are
ports on the left side of the system that allow
power cord to enter the internal and to plug in a
mouse and keyboard to make code edits on the
Raspberry Pi.

Figure 7: Back view and mounting points

DISCUSSION & FUTURE WORK

This project was a success in our eyes with fewer
challenges than we originally expected. W did
have some trouble fine tuning our plotting
mechanism to move smoothly and actuate the pen
correctly. Furthermore, another challenge was
having enough time to implement the camera and
GCODE experience we had planned to complete.
The image processing proved to be difficult and
we did not have the resources to fully implement
making the transition from a vectorized image to
GCODE commands.

Following the success of this prototype, there are
numerous objectives to complete with the current
scale before creating a full-scale prototype. As
mentioned earlier, we did not have time to
include a GCODE interpreter for drawing images
and this is the next step in this prototype. With
this implemented, a user could input any GCODE
image and have our system draw it onto the paper

roll. Additionally, we wish to see this system to
include more social aspects than currently
implemented. A future design will include a
feature in which users can create “groups” where
each person can upload and share their drawing in
addition to downloading their friends’ artwork.
The GUI could also be cleaned up to look more
user friendly and integrated with full touch screen
capability rather than the four physical buttons
currently in use. This social aspect is slightly
lacking currently in our design and we hope that
in the future to make sure children can stay
connected from anywhere in the world.

One of the biggest challenges that Coninu-wall
faces when moving to the full-size prototype is
keeping the cost down while making sure the
functionality is kept the same or improved.

VIDEO
 A video of describing our product and its
functions can be found here:

https://youtu.be/OEXYxr9qIEA

CODE
Our code was written in python on the Raspberry
Pi with use of the GPIO, PiCamera, and PyGame
libraries. The full code listings can be found
below and within our project folder here:
https://drive.google.com/drive/u/0/folders/1B7Ao
QNm9wkt6KTSjg85iz7M8SIg6vykr

main.py

Michael Xiao (mfx2) and Matthew Daniel

(mrd89)

Continu-wall

import libraries

import RPi.GPIO as GPIO
import time
import os
from picamera import PiCamera
import numpy as np
import sys, pygame

from PIL import Image

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders

os.putenv('SDL_VIDEODRIVER', 'fbcon') #
Display on piTFT

os.putenv('SDL_FBDEV', '/dev/fb1') #
os.putenv('SDL_MOUSEDRV', 'TSLIB') #
Track mouse clicks on piTFT

os.putenv('SDL_MOUSEDEV',
'/dev/input/touchscreen')

pygame.init()

pygame.mouse.set_visible(False)

set up screen

size = width, height = 320, 240
black = 0,0,0
white = 255, 255, 255
red = 255,0,0
green = 0,255,0
radius = 50

my_font= pygame.font.Font(None, 16)
screen = pygame.display.set_mode(size)

screen.fill(black)

GPIO.setmode(GPIO.BCM)

GPIO.setup(17, GPIO.IN,
pull_up_down=GPIO.PUD_UP)

GPIO.setup(22, GPIO.IN,
pull_up_down=GPIO.PUD_UP)

GPIO.setup(23, GPIO.IN,
pull_up_down=GPIO.PUD_UP)

GPIO.setup(27, GPIO.IN,
pull_up_down=GPIO.PUD_UP)

camera = PiCamera()

time_start = time.time()

state = 0

https://youtu.be/OEXYxr9qIEA
https://drive.google.com/drive/u/0/folders/1B7AoQNm9wkt6KTSjg85iz7M8SIg6vykr
https://drive.google.com/drive/u/0/folders/1B7AoQNm9wkt6KTSjg85iz7M8SIg6vykr

SERVO = 6

https://www.rototron.info/raspberry-pi-stepper

-motor-tutorial/

DIR = 13 # Direction GPIO Pin
STEP = 16 # Step GPIO Pin

DIR2 = 5
STEP2 = 12

CW = 1 # Clockwise Rotation
CCW = 0 # Counterclockwise Rotation
SPR = 200 # Steps per Revolution

GPIO.setup(DIR, GPIO.OUT)

GPIO.setup(STEP, GPIO.OUT)

GPIO.setup(DIR2, GPIO.OUT)

GPIO.setup(STEP2, GPIO.OUT)

GPIO.output(DIR, CW)

GPIO.output(DIR2, CW)

setup for servo

GPIO.setup(SERVO, GPIO.OUT)

servo = GPIO.PWM(SERVO, 46.5)

delay = .0208

send an email

def send_image():

email_user = '5725pi@gmail.com'
email_password = 'gnarly!1'
email_send = 'mfx2@cornell.edu'

subject = 'Continu-wall Drawing :) !'
msg = MIMEMultipart()

msg['From'] = email_user
msg['To'] = email_send
msg['Subject'] = subject

body = 'Hi there, here is your
continu-wall drawing!'

msg.attach(MIMEText(body,'plain'))

filename='/home/pi/Downloads/image.png'
attachment =open(filename,'rb')

part =

MIMEBase('application','octet-stream')
part.set_payload((attachment).read())

encoders.encode_base64(part)

part.add_header('Content-Disposition',"attachm
ent; filename= "+filename)

msg.attach(part)

text = msg.as_string()

server =

smtplib.SMTP('smtp.gmail.com',587)
server.starttls()

server.login(email_user,email_password)

server.sendmail(email_user,email_send,text)

server.quit()

#controlling steps for scrolling

def step(step_count):
if step_count < 0:

GPIO.output(DIR, CCW)

else:
GPIO.output(DIR, CW)

for x in range(step_count):
 GPIO.output(STEP, GPIO.HIGH)

 time.sleep(delay)

 GPIO.output(STEP, GPIO.LOW)

 time.sleep(delay)

#controlling steps for pen

def step2(step_count):
if step_count < 0:

GPIO.output(DIR2, CCW)

else:
GPIO.output(DIR2, CW)

for x in range(step_count):
 GPIO.output(STEP2, GPIO.HIGH)

 time.sleep(delay)

 GPIO.output(STEP2, GPIO.LOW)

 time.sleep(delay)

making a button

def make_button(text,location):
 text = my_font.render(text,True,white)
 text_rect =

text.get_rect(topleft=location)

 return text,text_rect

making the sidebar

def make_sidebar(text1, text2, text3, text4,
menu):

left_1, left_1_rect =

make_button(text1, (270,50))
screen.blit(left_1, left_1_rect)

left_1, left_1_rect =

make_button(text2, (270,100))
screen.blit(left_1, left_1_rect)

left_1, left_1_rect =

make_button(text3, (270,160))
screen.blit(left_1, left_1_rect)

left_1, left_1_rect =

make_button(text4, (270,220))
screen.blit(left_1, left_1_rect)

left_1, left_1_rect = make_button(menu,

(50,20))
screen.blit(left_1, left_1_rect)

pygame.display.flip()

oldState = 0

logo =

pygame.image.load('/home/pi/Downloads/logo.png
')

while True:

if state != oldState:
screen.fill(black)

time.sleep(1)
oldState = state

time.sleep(0.1)
print(state)

screen.fill(black)

if state == 0: # init state

screen.blit(logo, (-3,40))
make_sidebar("quit", "scroll",

"picture" , "draw", "HOME")

if (not GPIO.input(22)):
print("scroll mode")
state = 3

elif (not GPIO.input(23)):
print(" take a picture")

camera.capture('/home/pi/Downloads/image.png')
im =

Image.open("/home/pi/Downloads/image.png")
im = im.rotate(180)

im.save("/home/pi/Downloads/image.png")

img =

pygame.image.load('/home/pi/Downloads/image.pn
g')

img =

pygame.transform.scale(img, (256, 144))

state = 2
elif (not GPIO.input(27)):

print(" draw mode")
state = 1

elif (not GPIO.input(17)):
print("quit")
break

elif state == 1: #draw mode

screen.blit(logo, (-3,40))
make_sidebar("back", "square",

"circle" , "load", "DRAW")

if (not GPIO.input(22)):
print("draw a square")
os.system("python

/home/pi/Downloads/servo2.py")

os.system("python
/home/pi/Downloads/stepper2.py 100")

os.system("python
/home/pi/Downloads/stepper.py 400")

os.system("python
/home/pi/Downloads/stepper2.py -150")

os.system("python
/home/pi/Downloads/stepper.py -400")

os.system("python
/home/pi/Downloads/servo.py")

draw square

elif (not GPIO.input(23)):
print("draw a circle")
draw circle

elif (not GPIO.input(27)):

print(" load")
draw triangle

elif (not GPIO.input(17)):
print("back")
state = 0

elif state == 2: #picture mode
display the picture

screen.blit(img, (-3,40))
make_sidebar("back", "send",

"share" , "", "PICTURE")

if (not GPIO.input(22)):
print("send")
state = 0

elif (not GPIO.input(23)):
print("share")
state = 0

elif (not GPIO.input(17)):
print("back")
state = 0

elif state == 3: #scroll mode
screen.blit(logo, (-3,40))
make_sidebar("back", "left",

"right" , "", "SCROLL")

if (not GPIO.input(22)):
#os.system("python

/home/pi/Downloads/servo.py")

print("scroll forward")
os.system("python

/home/pi/Downloads/stepper2.py 30")
elif (not GPIO.input(23)):

#os.system("python

/home/pi/Downloads/servo2.py")

print(" scroll back")
os.system("python

/home/pi/Downloads/stepper2.py -30")
elif (not GPIO.input(17)):

print("back")
state = 0

GPIO.cleanup()

stepper.py

import sys

import os

import RPi.GPIO as GPIO

import numpy as np

import time

from time import sleep

steps = int(sys.argv[1])

GPIO.setmode(GPIO.BCM)

DIR2 = 5

STEP2 = 12

DIR = DIR2

STEP = STEP2

CW = 1 # Clockwise Rotation
CCW = 0 # Counterclockwise
Rotation

SPR = 200 # Steps per Revolution

GPIO.setup(DIR2, GPIO.OUT)

GPIO.setup(STEP2, GPIO.OUT)

delay = 0.00208

step_count=steps

if (steps < 0):

 GPIO.output(DIR, CW)

else:

 GPIO.output(DIR,CCW)

for x in range(abs(step_count)):

 GPIO.output(STEP, GPIO.HIGH)

 sleep(delay)

 GPIO.output(STEP, GPIO.LOW)

 sleep(delay)

servo.py

#!/usr/bin/env python3

import sys

import os

import RPi.GPIO as GPIO

import numpy as np

import time

GPIO.setmode(GPIO.BCM)

GPIO.setup(6, GPIO.OUT)

Start servo close to stopped

Create a PWM instance:

time_on_stop = 1.505 # ms
time_on_cw = 1.3 # ms
time_on_ccw = 1.7 # ms
time_off = 20 # ms

maxDC = (time_on_ccw/(time_on_ccw

+ time_off))*100

minDC = (time_on_cw/(time_on_cw +

time_off))*100

maxFreq = 1/(0.001*(time_on_ccw +

time_off))

minFreq = 1/(0.001*(time_on_cw +

time_off))

stoppedDC =

(time_on_stop/(time_on_stop +

time_off))*100

stoppedFreq =

1/(0.001*(time_on_stop +

time_off))

p = GPIO.PWM(6, stoppedFreq)

p.start(stoppedDC)

p.ChangeFrequency(maxFreq) # where
freq is the new frequency in Hz

p.ChangeDutyCycle(maxDC) # where
0.0 <= dc <= 100.0

time.sleep(1)

p.stop()

mail.py

import smtplib

from email.mime.text import
MIMEText

from email.mime.multipart import
MIMEMultipart

from email.mime.base import
MIMEBase

from email import encoders

x = 1

if (x ==1):

email_user =

'5725pi@gmail.com'

email_password = 'gnarly!1'
email_send =

'mfx2@cornell.edu'

subject = 'Continu-wall
Drawing :) !'

msg = MIMEMultipart()

msg['From'] = email_user
msg['To'] = email_send
msg['Subject'] = subject

body = 'Hi there, here is

your continu-wall drawing!'

msg.attach(MIMEText(body,'plain'))

filename='/home/pi/Downloads/image
.png'

attachment

=open(filename,'rb')

part =

MIMEBase('application','octet-stre
am')

part.set_payload((attachment).read

())

encoders.encode_base64(part)

part.add_header('Content-Dispositi
on',"attachment; filename=
"+filename)

msg.attach(part)

text = msg.as_string()

server =

smtplib.SMTP('smtp.gmail.com',587)
server.starttls()

server.login(email_user,email_pass

word)

server.sendmail(email_user,email_s

end,text)

server.quit()

