
Epileptic seizure detection from intracranial EEG
ECE 5040: Introduction to Neural Engineering Final Project

Michael Xiao
Electrical and Computer Engineering

Cornell University
Ithaca, NY

mfx2@cornell.edu

2nd Russell Silva
Electrical and Computer Engineering

Cornell University
Ithaca, NY

rms438@cornell.edu

3rd Isabella Salas-Allende
Biological Science
Cornell University

Ithaca, NY
ias44@cornell.edu

Abstract—Being able to predict and detect seizures accu-
rately would open many new doors to closed-loop stimulation
treatments for patients with epilepsy. Unfortunately, detecting
seizures is a challenging task due to its unique characteristics
that vary greatly from patient to patient. However, with the
development of modern machine learning techniques, this patient
individualized detection is becoming more and more feasible.
In this paper, we describe our development a machine learning
algorithm able to be trained on pre-recorded labeled data to
effectively distinguish a seizure state from a non-seizure state
using intracranial electroencephalogram (iEEG) recordings. Our
methods use 26 different features and three different classifiers
to achieve a top performing algorithm on the Kaggle data science
competition platform.

I. INTRODUCTION

Epilepsy is a chronic neurological disorder that affects over
1 percent of the US population, greatly lowering the quality of
life for many patients [1]. To make matters worse, for up to 40
percent of patients diagnosed with epilepsy, medications are
not effective, meaning that traditional clinical solutions often
have little effect [2]. Furthermore, even surgical solutions of
removing epilepsy-causing brain tissues have lasting sponta-
neous seizures. These seizures greatly disrupt everyday life as
even if they do not happen frequently, they bring a great deal
of anxiety even with the possibility of a seizure occurring.

A more modern solution that has recently been developed is
neurostimulation. In the past continuous stimulation has been
tested but found to have significant neuronal damage in the
surrounding tissue over time due to the frequency of pulses [3].
As a result, closed-loop responsive neurological stimulation
(RNS) is necessary for a safe and effective solution. RNS
works by sending a biphasic pulse to counteract a seizure
onset to stop it before it begins to spread to other areas of
the brain. To do this however, the brain must be constantly
monitored a seizure must be first detected to then send a signal
to the neurostimulator. This proves to be the greatest barrier
that RNS faces as physicians must review very large quantities
of continuous EEG data to identify qualities of seizures, which
are not only very subtle, but also tend to vary greatly on a
patient-to-patient basis.

Luckily, with the development of machine learning, we
can now automate this process of creating an individualized
classifying system able to sort through a specific patients

data and detect seizures. However, these machine learning
algorithms must be reliable, with low false positive and false
negative rates, in order to function as a false detection can have
drastic consequences for the patient. To push the boundaries
of the performance of these algorithms, competitions and open
source libraries and documentation have been established to
share and grow code and methods. Kaggle has become a
popular site on which these sort of data science competitions
are held, hosting a platform to support the data and foster
a healthy competition for the advancement of the field. We
compete in one of these competitions in order to detect
seizures and separate ictal from non-ictal states. Section 2 will
describe the objectives of this Kaggle competition, section 3
will highlight the methods we used including preprocessing,
features, and classifiers, section 4 will summarize our results
and findings, and section 5 will conclude our work and suggest
future improvements.

II. OBJECTIVES

The goal of this project is to classify two states associated
with a seizure: non-ictal (i.e., non-seizure or normal) and
ictal (i.e., seizure). One important difference to note in this
work compared to state-of-the-art algorithms is our work of
detection rather than prediction. The cutting edge of this field
is working to currently distinguish between the non-ictal and
preictal states to stop seizures before they even happen. In our
case, we aim to merely detect seizures, a slightly easier task
as the ictal and non-ictal states have more clear differences.

To create this model, we are provided with several datasets
via Kaggle including iEEG recordings from 7 patients. Within
this set of data, there are sampling frequencies of 500 and
5000 Hz, varying number of recording channels, and labelled
data. This data is separated into ictal training samples and
non-ictal samples, labelled by an expert epileptologist prior to
the competition. These details are highlighted below in table
1.

III. METHODS

Our algorithm can be separated into three broad sections.
First, all of the data is run through a preprocessor in order
to eliminate some noise and make feature extraction more
streamlined. Next, different features were extracted from the

TABLE I
TRAINING DATA SUMMARY

Patient 1 2 3 4 5 6 7

Sample Frequency (Hz) 5000 500 500 500 500 500 500
Number of Channels 96 56 16 88 104 88 96
Number of Ictal Training Samples 218 191 296 424 150 313 307
Number of Non-Ictal Training Samples 600 900 900 1200 660 2100 2400

time and frequency domain and stored into a separate dataset.
Lastly, the feature data was used to feed into our classifiers in
order to train our model using different techniques.

A. Preprocessing

Our preprocessing step was a very light computation which
simply readies the data for feature extraction. First, the input
signal is parsed to search for any values of NaN (Not a
Number). These NaN values are discarded and replaced with
zero. Next, we utilized common average referencing (CAR) as
seen in other works. CAR is performed by simply subtracting
the overall mean of the signal from each index of the signal.
This has been shown to reduce noise by up to 30% and reduce
stimulus artifacts [4]. An example CAR preprocessing step
from a non-ictal signal from patient 3 is shown in figure 1.

Fig. 1. Common average referencing performed on a non-ictal channel from
patient 3.

B. Feature Extraction

Throughout our work, we experimented with many different
features spanning across the time and frequency domains.
A table of all of the features we implemented is shown
below in Table 2 along with a summary of how each are
calculated. After finalizing our features, we implemented a
useful method that would perform the feature extraction on
the patient data and store them in new excel files with the
feature data concatenated. This way, when we moved on to
classification, we did not have to rerun our feature extraction
process, which saved processing power in our limited time
constraints. The features we used are further discussed in the
remainder of this section.

1) The Basic Features: line length, energy, variance, max-
imum, bandpower: Beginning our exploration of features, we
started with the features we were already very familiar with
and had used before: line length, energy, variance, maximum,
and bandpower. LLine length is calculated by taking the sum
of the differences between individual samples of a channel.
Energy is calculated by summing the squares of each sample
in a channel. Variance is a measure of how spread out a sample
is and can be calculated by summing the differences between

TABLE II
SUMMARY OF FEATURES

Feature Summary

Line Length
∑N

i=2 |xi − xi−1|

Energy
∑N

i=1 x
2
i

Variance
∑N

i=1(xi−xavg)
2

n−1

Maximum max(xi)

Band power θ, α, β, γ, highfrequency

Correlation Coefficients Comparing relationships between channels

Mobility
√

var(x′)
var(x)

Variance mobility(x′)
mobility(x)

Wavelet Mean, median, max, min of DWT
Zero Crossing Histogram samples between separate zero crossings

samples from the mean of the signal. Maximum simply finds
the highest amplitude of all samples in the signal. Lastly,
bandpower is calculated by taking the Fourier transform of the
signal and finding the area under the curve between specified
bands. Based on past literature, we noticed that there were
five primary bands that many papers experimented with: (04
Hz), (48 Hz), (812 Hz), (1230 Hz), and (¿30 Hz). To
start, we implemented two of these bandpower features from
12-30 Hz and from 100-250 Hz. Throughout this process,
the numpy library was very helpful in efficiently coding and
executing the feature extraction. With these basic features and
a random forest classifier, we were able to achieve an accuracy
score (calculated by area under ROC curve on Kaggles test
dataset) of 0.84629. Though this score was decent, we wanted
to explore other features to improve our score.

2) Correlation Coefficients: One of the first additions we
tried to make was adding correlation coefficients. Correlation
coefficients were calculated for each pair of channels yielding
features for the number of permutations of two channels
there were. This number could be calculated by equation (1)
where c represents the number of correlation coefficients and
n represents the number of channels.

c =
n ∗ (n+ 1)

2
(1)

Then, for each permutation of length 2, we used the numpy
argument, corrcoef, to calculate the Pearson product-moment
correlation coefficients as shown in table 2. This gave us a
measure of the strength of the linear relationship between two
channels, which provided our model some temporal-spatial
awareness of the signals.

After implementing correlation coefficients, we ran a diag-
nostic test to evaluate the importance of each feature. This was
evaluated by comparing the result of removing a particular fea-
ture on the overall performance. If the model performed much
worse without a feature, that feature had a greater importance.
We ran this for each of the features we had implemented up
to this point and normalized our results to graph, as seen in
figure 2. As shown, correlation coefficients had a very minimal
importance among all patients, much lower than all other
features for every patient. This was a discouraging start to
our feature exploration but was a good primer on how to add
new features in the future. Additionally, with this knowledge,
we removed the correlation coefficients from our code to save
on computation time and added additional bandpower features
due to the high importance we saw. The new bandpowers we
added were the theta band (4-8 Hz) and the alpha band (8-
12 Hz). This was pretty simple to implement in our existing
framework as we had already written a bandpower function
and created a very easy way to add on new features in our
code.

Fig. 2. Feature Importance Graph.

3) Hjorth Parameters: Hjorth parameters provide us with
two new features, mobility and complexity, that are additional
indicators of statistical properties in the time domain. In
previous works, it was found that the addition of Hjorth
parameters were able to improve the performance of EEG-
based BCI systems by an average of 4.4% [5]. As seen in table
2, these features are variations on the variance and derivative
of variance of a signal and are used for further analysis on
determining how spread a signal is. Mobility is a measure of
the proportion of the standard deviation of the power spectrum
and is calculated by taking the square root of the ratio of the
variance of the first derivative of the signal and that of the
signal. Complexity is a comparison of the signal to see how

much it resembles a pure sine wave and can be calculated by
taking the ratio of the mobility of the first derivative of a signal
and the signal itself. These three parameters are useful as they
are able to indicate information about the frequency spectrum
of a signal and the time domain. Additionally, because we
utilize three parameters that stack or make use of each other,
the computational cost of each is low.

4) Wavelet features: The discrete wavelet transform (DWT)
is a joint time-frequency analysis that has proved to be an
invaluable tool for the study of EEG signals in the past
[6]. DWTs main advantage over other transforms is that
because it discreetly samples waveforms, it is able to capture
the instantaneous frequency in time of samples. To perform
the DWT in our software, we made use of the PyWavelets
library, an open source and easy to use transform software
for python [7]. There are several flavors of DWTs, with the
primary two being Haar and Daubechies. Haar DWTs are the
most basic orthonormal wavelet transform and utilizes non-
overlapping windows to produce a computationally cheap and
memory efficient comparison between adjacent pixel pairs. A
Daubechies wavelet transform is more complex and uses over-
lapping windows, with the size usually specified by the number
following it. Because Daubechies averages over more pixels
with an overlapping window, it produces a smoother result. In
addition to type, DWT can also be given a decomposition level
parameter which determines the number of detail coefficients
the DWT function outputs.

In our model, we utilize a Daubechies-1 DWT with four
levels with the call:

cA4, cD4, cD3, cD2, cD1 = pywt.wavedec
(signal, ’db1’, level=4, axis=0)

. For each of these four detail coefficients, we then take the
mean, median, maximum, and minimum and collect them for
our features. This gives us 16 additional samples to work
with, providing our model insight into the temporal-frequency
relationships within the signal.

5) Zero Crossing Histogram: The last feature we tried to
implement was the zero crossing histogram (ZCH) as we
saw its promising use in several different papers to detect
Alzeimers disease, Vascular dementia, predicting seizures, and
characterizing sleep spindles [8][9]. ZCH is useful because
it is more robust in the presence of contaminating artefacts
and ignores most of the distributed noise in the signal. An
important first step we took for ZCH was performing CAR
on it so that it was centered around the zero mark. It is then
implemented by parsing through the signal and storing the
indices in which the signal changes from positive to negative or
vise versa (when it crosses zero). Then we would take the first
derivative of this index to yield the amount of samples between
individual zero crossings. These values were then averaged to
yield the final feature.

The main challenges we saw with the ZCH was its very
long computation time. It almost doubled the time it took for
feature extraction to execute and unfortunately, yielded results
that were not very accurate when cross validating. As a result,

on our final run, we decided to omit our implementation of
the ZCH despite our promising research on the feature.

6) Recursive Feature Elimination: One last layer of ro-
bustness implemented in the system was recursive feature
elimination, which essentially omits the least important portion
of the features. Feature importance was calculated with the
decrease in performance with the removal of the particular
feature. This means that the most important features see the
largest decrease in performance when not included in the
training data. Next, a threshold was set for what portion of
features are removed. In our testing, we tried 50%, 40%, and
25%, with 25% removal rate seeing the best results. Lastly, the
system would recursively consider smaller and smaller feature
sets (step size = 5%) until the threshold for feature removal
was achieved. This was implemented in our code using Scikit
Learns RFE function.

C. Classification

1) Three Layer Classifier: After our features had been
extracted and stored into our new data files, we then ran them
through our classification system, consisting of a random forest
classifier, an adaptive boosting classifier (AdaBoost), and an
extreme gradient boosting classifier (XGBoost). Each of these
classifiers was run independently on our feature data and the
results from the three were averaged together to create our
final and best performing submission.

The first classifier we used was random forest, a well
established and well researched classifier used in the neural
world [10]. Random forest classification uses an ensemble
learning method which utilizes a randomly selected subset of
the training set to create a forest of many decision trees. This is
done in conjunction with averaging to improve the predictive
accuracy and control the degree of overfitting the data. To
classify the input, each tree will vote on the status of the data
and the aggregated votes are used to decide the final class of
the test subject.

The second classifier utilized was AdaBoost, which we
found also commonly used in EEG studies [11]. Adaptive
boosting is a learning algorithm that creates a strong classifier
from many weaker classifiers by making predictions calculated
on a changing weighted average of other classifiers. This is
done in a pseudo random way by weighting (or boosting)
classifiers and seeing if the results are better or worse than
the previous copy. Classifiers are recursively reweighted until
the best features and thresholds are heavily weighted and
combined.

The last classifier we tried was XGBoost, one actually most
commonly found in Kaggle competitions, recently dominating
many of the leaderboards. XGBoost is similar to AdaBoost in
that it utilizes weighting. It begins with a naive model and then
calculates the errors from the model, creating a gradient. The
next model created takes into account the error from before
and moves its weighting against the gradient that was produced
from the previous model, effectively optimizing the boosting
parameters. The classification model is based on the gradient
descent algorithm to minimize loss.

We found the scikit learn python library to be immensely
helpful in implementing all of these classifiers. This was a very
effective approach for us because the classifiers were able to
negate the weaknesses and shortcomings of one another and
provide a layer of redundancy in our model.

2) Hyperparameter Bayesian Optimization: One additional
step we did in each of our classifiers was optimize the
parameters fed into the classifier call. The hyperparameters
for each classifier are shown below in table 3. Grid search is
the traditional method used to optimize these parameters and
is implemented by creating a large multidimensional grid of
the different parameters and iterating across them one by one
to search for the optimal hyperparameters. Though this yielded
good results, it often took us a very long time to search and
the range that we could search in was greatly limited by the
O(n) complexity.

To optimize along a greater range in a shorter time, we uti-
lized Bayesian optimization with the scikit-optimize module.
Bayesian optimization makes use of Bayes Rule, described in
equation (2) in which it makes a prediction given a condition.
In optimization, this is useful because each iteration of the
Bayesian optimization can jump across great bounds, rather
than being limited to having to search entry by entry to arrive
at a greater number in grid search. For example, if a low
number of estimators performs very poorly, the optimizer can
simply try again given that result, to a very large number of
estimators. In this way, the optimizer is able to arrive at good
hyperparameter values as soon as possible.

P (A|B) =
P (B|A)P (A)

P (B)
(2)

In each iteration, the hyperparameters chosen for the clas-
sifier are compared by cross validation. This is done by
segmenting the training data into four parts. Three of the data
sets become training sets and the last becomes a test data set.
The testing set can be rotated around in four different ways
to extensively test the parameters. Using this system, we were
able to find the best performing parameters for our classifiers
with the computer rather than choosing them by hand.

TABLE III
HYPERPARAMETERS OPTIMIZED FOR EACH CLASSIFIER

Random Forest AdaBoost XGBoost
n estimators n estimators n estimators
max depth learning rate learning rate

min samples leaf max depth
max features min child weight

min samples split gamma

IV. RESULTS

The majority of our testing results was performed upon the
held-out unlabeled data on the Kaggle competition page. This
data was comprised samples from each of the 7 patients, to-
talling to 17,819 total iEEG recordings. Our machine learning
algorithm then took these data sets as input and output a

probability of ictal state metric (between 0 and 1), utilizing
the prior training and feature extraction described above. The
results were saved in a text file and then transferred into a .csv
file to be formatted for submission.

Each team was allowed 15 submissions per day in order
to prevent guessing and overloading Kaggles server. These
entries were scored using the area under the receiving operat-
ing characteristic (AUROC) curve. This curve is composed
of plotting sensitivity, or the true positive rate, against 1-
specificity, or the false positive rate. A good curve is shaped
like a bulge toward the top left corner, with a better score being
closer to the corner. Equations for sensitivity and specificity
can be seen in equations (3) and (4). The public score available
to all teams before the deadline was our model evaluated using
just 30% of the total test data. The private leader board was
comprised of the remaining 70% of the data.

sensitivity =
truepositives

truepositives+ falsenegatives
(3)

specificity =
truenegatives

truenegatives+ falsepositives
(4)

Using this structure for results, our team submitted a total
of 39 different entries from various stages in our models
development. Our most simple model with just the basic
parameters scored a 0.84629 AUROC. With our adjustments
and additions, we were able to achieve a high public score of
0.92791 AUROC, winning our competition. With the private
data, our score dwindled slightly at 0.91806 AUROC, but we
still remained at the top of the leaderboards. Our biggest jumps
in scores occurred from when we added more features, when
we introduced feature removal, and when we began averaging
different classifiers. Unfortunately, we were unable to quantify
the effectiveness of each of these strategies due to the fact that
each built upon previous work and our increase in performance
scaled marginally less as we started nearing the 0.9 mark.

In addition to the AUROC performance, we were able to
retrieve the sensitivity and specificity for each patient, utilizing
the equations (3) and (4) above. Our results can be seen in table
4 below. As seen in the table, we achieved consistently high
specificity across all patients while there was a fair amount of
deviation within sensitivity. The most glaring example of this
was patient 5 as our model had a lot of trouble classifying this
particular patient.

TABLE IV
SENSITIVITY AND SPECIFICITY FOR EACH PATIENT

Patient Number Sensitivity Specificity
1 0.968 0.998
2 0.958 0.993
3 0.878 0.987
4 0.851 0.995
5 0.347 0.988
6 0.837 0.989
7 0.967 0.995

Lastly, we were able to compare the performances of the
different classifiers. To do this, we once again used cross
validation to train and then test each individual classifier
on data from patient one. As seen in figure 3, each of the
classifiers on their own already performed pretty well with
the features we were working, achieving over 96% sensitivity.
The Adaboost showed the most variance, achieving a slightly
higher sensitivity at the cost of a weaker specificity score.

Fig. 3. Classifier Performances on Patient 1

V. CONCLUSION

This project was a very rewarding experience and helped
introduce our group to a lot of the different aspects of machine
learning in iEEGs. Our interest in the class material definitely
peaked while we were working on the project as we had the
freedom to try whatever new approaches we could find. We
spent a lot of time reviewing literature and libraries and spent
a lot more time creating and modifying our algorithm. It was
exciting to see our model come together after many hours
of hard work we put in despite the ups and downs we had
throughout the project. Machine learning algorithms require a
lot of grit from a software perspective. We saw this firsthand
as many of our implementations that we spent a lot of effort
creating simply were not effective and, in some cases, even
made our model worse.

Though effective, our model was by no means perfect,
as seen in table 4. This really shows how different seizures
can look from patient to patient, and that there is no model
that works for 100% of people, once again highlighting why
machine learning can be so effective in this particular use case.
It felt a little better to know that many of the other teams were
also struggling with this particular patient and in the future,
we would love to try to look more into the patients specific
data.

If we had more time to improve our algorithm, we did
have a few more items we wanted to implement. First, we
wanted to try to implement more complex features we had
found from literature. This includes phase locking value,
cross frequency coupling, autoregressive coefficients, phase
synchronizations, among many others. Though adding more
features adds additional complexity to our code, our frame-
work of separating feature extraction and classification in two
discrete steps makes it easy to test our features. More features
can manage to capture more of the signals discrepancies and
relationships that could open new doors to how we look at
the signal. Furthermore, we would have liked to try weighting
the classifiers as well. Currently, the results from our three
classifiers are simply averaged together, but if we could add
more classifiers and run another layer of optimization among
those classifiers, we could add even more levels of redundancy
in our mode..

Overall, this was a great introduction into the multidis-
ciplinary realm of neural engineering and I really enjoyed
working with my team of very diverse backgrounds and skills.
I am very hopeful to see how the technology grows as machine
learning continues to mature and reading through literature has
made me confident in the foundation we have already laid for
effective closed-loop neurostimulation devices.

REFERENCES

[1] C. Begley, M. Famulari, J. Annegers, D. Lairson, T. Reynolds, S. Coan,
et al. The cost of epilepsy in the United States: an estimate from
population-based clinical and survey data Epilepsia 2000; 41:34251.

[2] National Institute of Neurological Disorders and Stroke, The Epilepsies
and Seizures: Hope Through Research, Patient and Caregiver Informa-
tion, Aug 8, 2018

[3] J. Politsky, R. Estellar, A. Murro, J. Smith, P. Ray, Y. Park, et al. Effects
of electrical stimulation paradigm on seizure frequency in medically
intractable partial seizure patients with a cranially implanted responsive
cortical neurostimulator. In: Proceedings of the Annual Meeting of
American Epilepsy Society (AES), 2005.

[4] G. Oleary, D. Groppe, T. Valiante, N. Verma, and R. Genov,
NURIP: Neural Interface Processor for Brain-State Classification and
Programmable-Waveform Neurostimulation, IEEE Journal of Solid-State
Circuits Vol. 53, No. 11, Nov 2018

[5] S. Oh, Y. Lee, H. Kim, A Novel EEG Feature Extraction Method Using
Hjorth Parameter, International Journal of Electronics and Electrical
Engineering Vol. 2, No. 2, June, 2014

[6] R. Panda, P. S. Khobragade, P. D. Jambhule, S. N. Jengthe, P. Pal, and
T. Gandhi, Classification of EEG signal using wavelet transform and
support vector machine for epileptic seizure diction, in International
Conference on Systems in Medicine and Biology (ICSMB), pp. 405 408,
2010

[7] G. Lee, R. Gommers, F. Wasilewski, K. Wohlfahrt, A. OLeary,
H. Nahrstaedt, and Contributors, PyWavelets - Wavelet Transforms
in Python, 2006-,https://github.com/PyWavelets/pywt [Online; accessed
2019-5-1].

[8] L. Wijesinghe, D. Wickramasuriya, and A. Pasqual, Generalized Pre-
processing and Feature Extraction Platform for Scalp EEG Signals on
FPGA, IEEE Conference on Biomedical Engineering and Sciences, Dec
8-10 2014

[9] A. Zandi, R. Tafreshi, M. Javidan, G. Dumont, Predicting temporal lobe
epileptic seizures based on zero-crossing interval analysis in scalp EEG
in Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, 2010

[10] D. R. Edla, K. Mangalorekar, G. Dhavalikar, S. Dodia, Classification
of EEG data for human mental state analysis using Random Forest
Classifier, International Conference on Computational Intelligence and
Data Science, 2018

[11] P. Das, A. Sadhu, A. Konar, B. Bhattacharya, Adaptive Parameterized
AdaBoost Algorithm with application in EEG Motor Imagery Classifi-
cation, 2015 International Joint Conference on Neural Networks, July
12-17, 2015

